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1 Groups of orders 6 and 8

1.1 Two groups of order 6

I Groups of order 6

I the cyclic group Z/6Z
I the symmetric group S3

The former is actually a product1, Z/6Z ∼= Z/2Z × Z/3Z. It has nontrivial proper
subgroups A = {0, 3} and B = {0, 2, 4}. G = AB, A ∩ B = {0}, and A,B commute, so
G ∼= A×B.

Definition 1.1. The symmetric group is Sn = {permutations of n points 1, 2, . . . , n}

Notation for permutations: (a b c d) is the function taking a 7→ b 7→ c 7→ d 7→
a. The 6 elements are {e, (1 2), (2 3), (1 3), (1 2 3), (1 3 2)}. The proper subgroups are
{e, (1 2 3), (1 3 2)} , {e, (1 2)} , {e, (2 3)} , {e, (1 3)}, and {e}.

1.2 Quotient groups

Fundamental problem: Suppose H is a subgroup of G. We have a set of left cosets aH,
the set of such denoted by G/H. Is G/H a group? The most natural attempt is to define
the operation as (aH)(bH) = (ab)H. The operation we have defined implies that cosets
are equivalence classes for the relation a ≡ b iff aH = bH (meaning a−1b ∈ H). Is this
well-defined?

Suppose b1 ≡ b2, so b1 = b2h for some h ∈ H. Then ab1 = ab2h, so ab1 ≡ ab2. Suppose
a1 ≡ a2. We want a1b ≡ a2b. We have a2hb = a2b, so we would be done if the group is
commutative. In fact, the condition we need here is hb = bh′ for some h′ ∈ H; so this
operation is well defined if b−1Hb = H.

1Cayley once made the mistake of thinking these two were different groups, claiming that there were 3
groups of order 6.
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Definition 1.2. A subgroup H is normal in G if gH = Hg for all g ∈ G.

Example 1.1. Let G = S3 and H = {e, (1 2 3), (1 3 2)}. Then H is normal.

Remark 1.1. In fact, any subgroup of index 2 is always normal. H is normal ⇐⇒ left
cosets are the same as right cosets. If H has index 2, left cosets are H and G \H; these
are also right cosets, so H is normal. So G/H is a group of order 2.

Example 1.2. Let G = S3 and H = {e, (1 2)}. H is not normal because (23)H(23)−1 6= H;
we have (2 3)(1 2)(2 3)−1 = (1 3), which is not in H. In this case, the right cosets are not
equal to the left cosets.

1.3 Other groups of order 6

We want to classify the groups of order 6. The first step is to pick an element of order 3.
Why does this exist?

Theorem 1.1. Suppose p is prime and p divides |G|. The G has an element of order p.

Proof. Use induction on the order of the group. Assume this is true for all smaller groups.
First case: G is abelian. Pick some element g of some prime order q; this exists because

any element has order dividing G and if g has order mn, gm has order n. If q = p, we
are done. If q 6= p, then look at group G/ 〈g〉; this has order less than G, so our inductive
hypothesis gives us that G/ 〈g〉 has ana elements h or order p. Now lift h to some a ∈ G.
ap ∈ 〈g〉, so a has order p or pq. So a or aq has order p.

Second case: G is not abelian. Look at the adjoint action of G on itself; i.e. g ·s = gsg−1.
Decompose G into orbits under this action. The meaning of a, b being in the same orbit
is that a = gbg−1 for some g ∈ G. The orbits partition G into equivalence classes. So
|G| =

∑
|Orbit|. Lagrange’s theorem says that |Orbit| = |G| / |H|, where H is the stabilizer

of one point of the orbit. So |G| =
∑

orbits |G| / |H|. We now have 2 cases:
Case 1: Some H with |H| < |G| has order divisible by p. Then by induction, H has an

element of order p, so G does, as well.
Case 2: If |H| < |G| and |H| is not divisible by p, then |G| / |H| is divisible by p. So

|G|︸︷︷︸
divisible by p

=
∑
orbits
H(G

|G|
|H|︸ ︷︷ ︸

divisible by p

+
∑
orbits
H=G

|G|
|H|

=
∑
orbits
H(G

|G|
|H|︸ ︷︷ ︸

divisible by p

+
∑
orbits
H=G

1.

Elements that commute with everything in G, the set of which is called the center of
G, is abelian and has order divisible by p because the term on the right is precisely the
order of the center of G. By the previous cases, the center of G has an element of order p,
so we are done.
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Remark 1.2. This does not need to hold if p is not prime. G = Z/2Z × Z/2Z has no
element of order 4, but 4 divides |G|.

Suppose G has order 6. Pick element g of order 3. Then
{
e, g, g3

}
is a subgroup of

order 3. It is normal since it has index 2. Pick an element h of order 2. This gives a
subgroup {e, h}, which is not necessarily normal. Then G is a semidirect product of these
subgroups of orders 2 and 3.

Definition 1.3. A direct product of groups A and B is A × B where the operation is
(a1, b1)(a2, b2) := (a1a2, b1b2).

Here, A and B are both normal and commute. In the following definition, A and B
will not necessarily commute.

Definition 1.4. Suppose A is normal and B may not be normal. For each element b ∈ B,
a 7→ bab−1 is an automorphism of A. Suppose we have a automorphism ϕb of A for each
element of B where ϕb1b2 = ϕb1ϕb2 (this means we have a homomorphism from B into
Aut(A)). Then a semidirect product of groups A and B is A o B where the operation is
(a1, b1)(a2, b2) := (a1ϕb2(a2), b1b2).

So if we have a action of the group B on A, we can define the semidirect product AoB.

Example 1.3. Let A = Z/3Z, and let B = Z/2Z. The automorphisms of A are the
identity and a 7→ −a. There are 2 ways for B to act on A, the trivial action ϕb(a) = a,
and the nontrivial action ϕb(a) = −a if b 6= e. These produce the two groups of order 6:
Z/6Z and S3, respectively.

There are no other groups of order 6.

1.4 Groups of order 8

Case 1: All elements have order 2. This implies the group is abelian (same argument as
last lecture), so it is really a vector space over F2. So it is G ∼= F2 × F2 × F2.

Case 2: Some element g has order 4. Then H =
{

1, g, g2, g3
}

is a subgroup of index 2,
so it is normal. We write what is called an exact sequence:

1→ Z/4Z︸ ︷︷ ︸
∼=H

injective︷︸︸︷→ G

surjective︷︸︸︷→ Z/2Z︸ ︷︷ ︸
∼=G/H

→ 1.

Definition 1.5. An exact sequence is a sequence of groups A
f−→ B

g−→ C, where im(f) =
ker(g). A short exact sequence is an exact sequence of the form 1→ A→ B → C → 1.

Remark 1.3. A standard blunder is to assume that if we have an exact sequence 1→ H →
G→ H/G→ 1, then G is a direct or semidirect product of H and G/H. A counterexample
is G = Z/4Z and H = Z/2Z.

3



Remark 1.4. Given A,B ⊆ G with 1→ A→ G→ B → 1 exact, a common problem is to
find G. G is called the extension of B by A2. This is hard even when A and B are abelian.

Pick some h ∈ H mapping to a nontrivial element of Z/2Z. So G contains g, h, g4 = e,
h2 = e, g, or g2, and

{
1, g, g2, g3

}
, so hgh−1 = g or g3.

So we get 6 cases. Note that hgh−1 = g iff G is abelian. We cannot have hgh−1 = g3

and h2 = g, because then g and h commute, so the group is abelian and not abelian. If
h2 = g and hgh−1 = g, then G = Z/8Z. Otherwise, if hgh−1 = g, then G ∼= Z/4Z× Z/2Z.
If hgh−1 = g3 and h2 = e, we get the dihedral group of order 8. If h2 = g2 and hgh−1 = g3,
we have the quaternion group. This covers all the cases.

Remark 1.5. The quaternions3 {a + bi + cj + dk : a, b, c, d ∈ R} form a 4 dimensional
division algebra containing C = {a + bi,∈ R}.

We then have

I Groups of order 8

I the cyclic group Z/8Z
I the product group Z/2Z× Z/2Z× Z/2Z (∼= F2 × F2 × F2)

I the product group Z/4Z× Z/2Z
I the dihedral group D8

I the quaternion group Q8

2This is also sometimes called the extension of A by B.
3The word quaternion actually means soldier. Quaternions (not the mathematical kind) are referenced

in the New Testament of Christianity.
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