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1 Groups of orders 6 and 8

1.1 Two groups of order 6

» Groups of order 6

» the cyclic group Z/6Z
» the symmetric group Ss

The former is actually a product!, Z/6Z = 7Z/27 x 7/3Z. It has nontrivial proper
subgroups A = {0,3} and B = {0,2,4}. G = AB, An B = {0}, and A, B commute, so
G=AxB.

Definition 1.1. The symmetric group is S, = {permutations of n points 1,2,...,n}

Notation for permutations: (a b ¢ d) is the function taking a — b — ¢ — d —
a. The 6 elements are {e,(12),(23),(13),(123),(132)}. The proper subgroups are

{e,(123),(132)},{e,(12)},{e,(23)},{e,(13)}, and {e}.

1.2 Quotient groups

Fundamental problem: Suppose H is a subgroup of G. We have a set of left cosets aH,
the set of such denoted by G/H. Is G/H a group? The most natural attempt is to define
the operation as (aH)(bH) = (ab)H. The operation we have defined implies that cosets
are equivalence classes for the relation a = b iff e = bH (meaning a~'b € H). Is this
well-defined?

Suppose by = bs, so by = boh for some h € H. Then ab; = absh, so ab; = abs. Suppose
a1 = as. We want a1b = asb. We have ashb = aqb, so we would be done if the group is
commutative. In fact, the condition we need here is hb = bh' for some h' € H; so this
operation is well defined if b"'Hb = H.

!Cayley once made the mistake of thinking these two were different groups, claiming that there were 3
groups of order 6.



Definition 1.2. A subgroup H is normal in G if gH = Hg for all g € G.
Example 1.1. Let G = S3 and H = {¢,(123),(132)}. Then H is normal.

Remark 1.1. In fact, any subgroup of index 2 is always normal. H is normal <= left
cosets are the same as right cosets. If H has index 2, left cosets are H and G \ H; these
are also right cosets, so H is normal. So G/H is a group of order 2.

Example 1.2. Let G = 5’3 and H = {e, (12)}. H is not normal because (23)H (23)~! # H;
we have (2 3)(12)(23)~! = (13), which is not in H. In this case, the right cosets are not
equal to the left cosets.

1.3 Other groups of order 6

We want to classify the groups of order 6. The first step is to pick an element of order 3.
Why does this exist?

Theorem 1.1. Suppose p is prime and p divides |G|. The G has an element of order p.

Proof. Use induction on the order of the group. Assume this is true for all smaller groups.

First case: G is abelian. Pick some element g of some prime order ¢; this exists because
any element has order dividing G and if ¢ has order mn, g™ has order n. If ¢ = p, we
are done. If ¢ # p, then look at group G/ (g); this has order less than G, so our inductive
hypothesis gives us that G/ (¢g) has ana elements h or order p. Now lift h to some a € G.
aP € (g), so a has order p or pg. So a or a? has order p.

Second case: G is not abelian. Look at the adjoint action of G on itself; i.e. g-s = gsg
Decompose G into orbits under this action. The meaning of a,b being in the same orbit
is that @ = gbg~! for some g € G. The orbits partition G into equivalence classes. So
|G| = > |Orbit|. Lagrange’s theorem says that |Orbit| = |G|/ |H|, where H is the stabilizer
of one point of the orbit. So |G| =" s |G|/ |H|. We now have 2 cases:

Case 1: Some H with |H| < |G| has order divisible by p. Then by induction, H has an
element of order p, so G does, as well.

Case 2: If |H| < |G| and |H| is not divisible by p, then |G|/ |H]| is divisible by p. So
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Elements that commute with everything in G, the set of which is called the center of
G, is abelian and has order divisible by p because the term on the right is precisely the
order of the center of G. By the previous cases, the center of G has an element of order p,
so we are done. O



Remark 1.2. This does not need to hold if p is not prime. G = Z/27Z x 7Z/27Z has no
element of order 4, but 4 divides |G|.

Suppose G has order 6. Pick element g of order 3. Then {e, g, g?’} is a subgroup of
order 3. It is normal since it has index 2. Pick an element h of order 2. This gives a
subgroup {e, h}, which is not necessarily normal. Then G is a semidirect product of these
subgroups of orders 2 and 3.

Definition 1.3. A direct product of groups A and B is A x B where the operation is
(a1,b1)(az,b2) = (araz, bibs).

Here, A and B are both normal and commute. In the following definition, A and B
will not necessarily commute.

Definition 1.4. Suppose A is normal and B may not be normal. For each element b € B,
a — bab~! is an automorphism of A. Suppose we have a automorphism ¢ of A for each
element of B where ¢y, = ¢p, ¢, (this means we have a homomorphism from B into
Aut(A)). Then a semidirect product of groups A and B is A X B where the operation is

(a1,b1)(az,b2) = (a1pp, (az), bibs).

So if we have a action of the group B on A, we can define the semidirect product A x B.

Example 1.3. Let A = Z/3Z, and let B = Z/2Z. The automorphisms of A are the
identity and a — —a. There are 2 ways for B to act on A, the trivial action pp(a) = a,
and the nontrivial action ¢p(a) = —a if b # e. These produce the two groups of order 6:
Z/6Z and Ss, respectively.

There are no other groups of order 6.

1.4 Groups of order 8

Case 1: All elements have order 2. This implies the group is abelian (same argument as
last lecture), so it is really a vector space over Fy. So it is G = Fy x Fy x Fo.

Case 2: Some element g has order 4. Then H = {1, 9,9, g3} is a subgroup of index 2,
so it is normal. We write what is called an exact sequence:

injective  surjective

1= Z/AZ =~ G "= ZJ2Z — 1.

SN—~— SN——
~H ~G/H

Definition 1.5. An exact sequence is a sequence of groups A i) B C, where im(f) =
ker(g). A short exact sequence is an exact sequence of the foorm 1 - A — B — C — 1.

Remark 1.3. A standard blunder is to assume that if we have an exact sequence 1 - H —
G — H/G — 1, then G is a direct or semidirect product of H and G/H. A counterexample
is G=72/47 and H = Z/2Z.



Remark 1.4. Given A, B C G with 1 - A - G — B — 1 exact, a common problem is to
find G. G is called the extension of B by A%. This is hard even when A and B are abelian.

Pick some h € H mapping to a nontrivial element of Z/27Z. So G contains g, h, g* = e,
h? =e, g, or ¢, and {1,9,92,93}, so hgh™' =g or ¢>.

So we get 6 cases. Note that hgh™! = ¢ iff G is abelian. We cannot have hgh™! = ¢>
and h? = g, because then g and h commute, so the group is abelian and not abelian. If
h? = g and hgh™! = g, then G = Z/87Z. Otherwise, if hgh™! = g, then G = Z /A7 x 7./ 2.
If hgh=' = ¢ and h? = e, we get the dihedral group of order 8. If h? = g% and hgh™' = ¢3,
we have the quaternion group. This covers all the cases.

Remark 1.5. The quaternions® {a + bi + c¢j + dk : a,b,c,d € R} form a 4 dimensional
division algebra containing C = {a + bi, € R}.

We then have

» Groups of order 8

» the cyclic group Z/87Z

» the product group Z/27 x Z/27 x 7./27 (= Fy x Fy x Fy)
» the product group Z/47Z x Z/27

» the dihedral group Dg

» the quaternion group Qs

2This is also sometimes called the extension of A by B.
3The word quaternion actually means soldier. Quaternions (not the mathematical kind) are referenced
in the New Testament of Christianity.



